Physics Workshop Review (Physics Results for Moriond)

DØ Collaboration Meeting

Terry Wyatt.

Manchester University.

27th February 2004

Dataset, quality, tools

- Full ~200 pb⁻¹ July 02 Sept 03 dataset reprocessed, fixed, skimmed and analysed
 - This was a huge effort/achievement that should be recognised/celebrated!
- Main improvements since Lepton-Photon-03:
 - Tracking efficiency
 - Jet quality
 - Data quality by LBN and not by Run (for some categories?)
 - Fraction of bad quality data is decreasing
 - but 1-3% times N detectors and triggers mounts up still!

Introductory apologies, excuses, complaints

- Very large number of people working very hard
 - Can't do justice to all their efforts in 35 minutes
- I decided not to mention names associated with each plot/result
- Not every talk/result explicitly mentioned
 - Considerable duplication in some areas (esp. W+jets [esp. with B-tag])
- Still very early days in DØ physics analysis:
 - Important aspect of "physics analysis" is to learn about/improve the detector/trigger/reco/MC:
 - We heard many pleas from online and ID people for more feedback from physics analysers
- Concentrate mainly on results expected for Moriond

Tracking Improvements

• Efficiency:

from μ+jet data

Monte Carlo

Momentum scale: tune B field, material, alignment

<u>Overview</u>

Detector, objects	Experimental signature, physics topic
Tracks: (μ for trigger & B-tag)	(Semi-)exclusive B decays (lifetimes, mixing, branching ratios)
Muons:	$ μ^+μ^- $ final states: Y, Z, high $m_{μμ}$ $μ(μ)+MET: W → μυ$, exotics (cross-section•Branching ratio: measurements and/or limits)
+ Electrons:	ditto, plus: eμ+MET, Afb(ee)
+ Photons:	Wγ, γγ+ΜΕΤ

Overview (continued)

dσ/dp _T , dσ/dm _{jj} ,
dσ/dp _T , dσ/dm _{jj} , tt→6jets, j(j)+MET
W/Z + jets (QCD, top, H)
LQ,
ditto!
\

Measurements with B Hadrons

Huge samples of B hadron decays in 250 pb-1

$0.35 \\ 0.25 \\ 0.15 \\ 0.10 \\ 0.15 \\ 0.10 \\$

Measurement of $\tau(B^+)/\tau(B_d)$

$$D^*$$
 sample: $\sim 84\% \ B^0 \ \sim 15\% \ B^+ \ \sim 2\% \ B_s$
 D^0 sample: $\sim 16\% \ B^+ \ \sim 82\% \ B^0 \ \sim 2\% \ B_s$

• Precise measurement of τ^+/τ^0 is obtained;

$$k = 0.094 \pm 0.021(stat) \pm 0.020(syst)$$

• Consistent with world average value $k = 0.085 \pm 0.017$;

- See B -> D**μ X signal
 - 457 +/- 44 events
 - No signal for wrong sign combination
- Two merged resonances
 - + D₀(2420)
 - D*0₂(2460)
- D* reflection for wrong sign combination

B⁰_d Mixing Using Same Sample

- Tag flavour at production
 - Opposite Side μ
 - Same Side π

Careful analysis of D*+ sample composition required

Measured Bd oscillations with the OSM $dM_{OSM}=0.511\pm0.050(stat.)ps^{-1}$ Measured Bd oscillations with the SST $dM_{SST}=0.456\pm0.055(stat.)ps^{-1}$

Other B Physics Measurements

- $X(3872) \rightarrow J/\Psi \mu^+ \mu^-$ (first run 2 paper?)
- B⁰ lifetime from
 B⁰ →J/ΨK⁰

• Sensitivity study for $B_s \rightarrow \mu^+ \mu^-$

Box not opened!

Huge potential - v13 has inclusive > 3 GeV trigger at L1/L2

$Z \rightarrow \mu^+ \mu^-$

- Public utilities (TMB) to:
 - select candidates
 - total background ~1%

measure efficiencies

simulate in PMCS

(use .or. of single and di-muon triggers)

Υ**(1S)**

High Mass μ⁺μ⁻

- Sensitive to:
 - Large Extra Dimensions
 - Z'

Diffractive $Z \rightarrow \mu^+ \mu^-$

One proton remains intact

$W \rightarrow \mu \nu$

Decays in flight!

Analysis uses Z→μ⁺μ⁻
 infrastructure for efficiency
 measurements and simulation

$Z \rightarrow e^+e^-$

Calorimeter problems

tracking efficiency vs deteta (used in PMCS)

W→eυ

W candidate MC - data comparison

Electron pt, CC and EC

Electron deteta, CC and EC

Z events (at least 1 track)

All: 7636 ± 88

CC-CC: 3910 ± 62

CC-EC: 3001 ± 56

EC-EC: 725 ± 27

W events

All: 129842 ± 1077

CC: 102472 ± 941

EC: 27370 ± 524

W/Z Ratio(preliminary):

 $R = 10.15 \pm 10 \text{ (stat)}$

compared to: 10.36 ± 31 (Summer 03)

Afb in e⁺e⁻

High Mass e⁺e⁻ (γγ)

No data quality cuts applied! Lumi normalised to Z

 $M(diEM) = 475 \text{ GeV}; \cos\theta^* = 0.01; ME_T = 8.8 \text{ GeV};$

Limits on Extra Dimensions

Combination with Run I

- η < 0.24 (was 0.28), M_S(GRW) > 1.43 TeV
- These are the most restrictive limits to date

Limits set also on TeV⁻¹ scale extra dimensions and Z'

Multi-Boson Final States

Background Subtracted Data: W→evγ

Also searches for (H→)WW and WZ

channel	data	expected
ee	2	2.7±0.7
еμ	2	3.1±0.4
μμ	5	5.3±0.6

Other searches in multi-lepton final states

- All possible combinations of e, μ, γ, MET
- Topologies, momenta model dependant

channel	data	SM expected
same sign μμ	1	0.13±0.06
eel	1	0.05±0.25
e μ	0	0.56±0.43

Jets - QCD

(Data-Theory)/Theory

0.5 < lyl < 1.0

Systematics dominated by JES systematics errors

Other Jet Analyses

• j(j) + MET: sensitivity killed by JES uncertainty (some scope for less conservative treatment of JES)

W and Z + jets

 ALPGEN MC provides better description than Pythia for >2 jets

Top in lepton+jet channel

- Isolated p_T^{lept} > 20 GeV
- MET > 20 GeV
- Count jets E_T > 15 GeV
- Form likelihood from kinematic quantities

Data-MC comparisons show discrepancies

N _{jet} =1	N _{jet} =2
N _{jet} =3	N _{jet} =4

∆m (stat.) ~ 5 GeV expected - no result given so far

Top in lepton+jet channel

	muons	electrons CC	electrons EC
$N_t^{W+QCD+ttbar}$	100	136	46
fitted N_t^{W}	70.6 + 12.4 - 11.6	78.0 + 15.1 - 14.5	34.1 + 7.8 - 7.2
fitted N_t^{gcD}	7.0 + 0.9 - 0.8	27.6 + 2.4 - 2.3	11.0 + 1.0 - 1.0
fitted N_t^{ttbar}	22.1 + 9.9 - 8.9	30.2 + 12.4 - 11.2	0.82 + 4.5 - 0.82

Likelihoods based on scaled variables

$$\sigma_{\text{(muons)}} = 7.5^{+3.4}_{-3.0} \text{(stat)}^{+x.x}_{-x.x} \text{(syst)} +- 0.5 \text{(lumi)} pb$$

$$\sigma_{\text{(electrons)}} = 9.4^{+3.9}_{-3.5} \text{(stat)}^{+x.x}_{-x.x} \text{(syst)} +- 0.6 \text{(lumi)} pb$$

Systematics at ~15% level

Leptoquark Searches

eejj and evjj

S_T = 437 GeV
 Mee = 126 GeV; Mej = 258, 290 GeV

- Dominant syst. from JES
- Similar analyses nearing completion in μμjj and μνjj

Combined Limit for β =0.5 (at 95%CL): MLQ>207 GeV (last Summer:196 GeV)

W+jets with B-tag (7 talks!)

Top in di-lepton channel

Channel	Data	Non-top
ee	5	1.34
μμ	4	2.65
еμ	8	0.95

$$\sigma_{\text{ttbar}} = 10.89^{+4.043}_{-3.319} \text{ (stat)}^{+1.859}_{-1.565} \text{ (sys) pb.}$$

A Plea to Analysers

Ask not just:

detector

What can DØ trigger do for my analysis

reco

computing

data quality

Ask also: detector

trigger

What can my analysis do for DØ reco

computing

data quality

A Plea to Senior People

Get involved!

It's FUN having lots of data!

Let's enjoy the next few years!

